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Abstract

As graphics accelerated cards improve and processors become increasingly multi-core,

parallel implementations become popular. Both Intel and NVidia have recently investi-

gated the potential of ‘Real-Time Ray Tracing’ on their latest architectures. This project

focuses on the design and implementation of a ‘Ray Tracer’ capable of producing com-

puter graphics images, incorporating lighting effects such as shadows and specular high-

lights. This project strives towards real-time performance on consumer level hardware.
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1 Introduction

1.1 Background and Motivation

Ray tracing is a technique that simulates the physics of light to render computer gen-

erated images capable of a high degree of visual realism. The Ray tracing technique

has been around for many years, it was first proposed by Whitted (1980). Despite this

ray tracing has taken a back seat, with massive research gone into classic rasterised 3D

graphics, which has become the norm to computer rendering. Ray traced images are

achieved by tracing the path of light through pixels in an image plane, but this form of

rendering requires a much greater computational cost than traditional raster graphics,

therefore limiting its applications of use. It has however become the main rendering

technique used in most high-end 3D modelling and animation systems when creating

still images, but until now real-time applications of ray tracing has yet to become pos-

sible, with the exception for expensive large industrial hardware. This means now with

increasing hardware capacities, more research has started to be put into various forms of

ray tracing. The improvements of graphics accelerated cards and processors becoming

increasingly multi-core, means that real-time ray tracing is starting to become possible

through the use of parallel implementations. This is especially useful on GPUs (Graph-

ics Processing Unit Hardware) which contain hundreds or thousands of hardware cores

that promises great opportunities to achieve what would be considered impossible in the

past. Major companies such as Intel and NVidia have recently investigated the poten-

tial of real-time ray tracing on their latest hardware architectures. Ray Tracing is also

very useful as there are many other algorithms, which expand upon the basic ray tracing

technique to further generate photo-realistic results. This field of graphics is a hugely

interesting field due to the potential of this emerging graphical technique that has been

around for decades but only until now has it been possible to fully be realised.
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1.2 Aims

This project focuses on the design and implementation of a ray tracer capable of pro-

ducing computer graphics images. The ray tracer should incorporate a range of optical

effects such as shadows, reflections and specular highlights. The project will strive to-

wards real-time performance on consumer level hardware through optimisations and

parallelisation. The final ray tracer will demonstrate its capabilities modelling a scene

that exhibits the functions of the ray tracer, for example scenes exhibiting reflections

and refractions in glass objects.

1.3 Areas of knowledge required

The ‘Ray Tracer’ is a process that creates images by simulating how light works in the

real world. Unlike the forward ray tracing of the real world, it uses backward ray tracing

which involves ray casting from the viewing point into each pixel of the image plane.

Each ray is then tested to see if it intersects with objects in the scene. Knowledge and

research of rays and ray-object intersections is needed. If a intersection does occur then

that pixels colour is obtained by mathematically calculating the amount of light on the

surface from the light sources in the scene until eventually a single colour is determined.

This requires some knowledge and maths of the physics of light, also with research on

the lighting calculating methods of calculating shading, reflections and transparency

will be incorporated. To improve on real time performance parallelisation of the sys-

tem will need to be applied, to greatly reduce the computational time through use of

languages such as CUDA or OpenCL which utilise the many cores of today’s GPUs

(Graphics Processing Unit Hardware). One of these languages needs to be learnt to be

able to effectively code upon the GPU. To produce the system programming knowledge

of a compatible programming language such as c++ is required. Additionally research

into accelerated data structures such as Kd-trees or regular grids help real-time perfor-

mance, but these generally these structures require pre-processing time which might be

inappropriate for real-time applications.
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2 Literature Review (Related Work)

Ray tracing is a process in computer graphics that originated many years ago through

the work of Whitted (1980), who implemented basic ray tracing with advanced lighting

to generate images of graphical quality. This was based upon the ray casting technique

originating from Appel (1968). According to Whitted (1980) these high quality image

results took hours to generate due to the high complexity of the intersection and lighting

calculations. The basics of ray tracing can be represented through the pinhole camera

model, described so that "each pixel is a small independent window onto the scene",

(Glassner, 1993). Ray tracing involves ray casting from the viewing point into each of

these pixels of the image. These rays are formed by a camera position and direction

which are then traced through the two-dimensional array of pixels into a scene of lights

and shapes. Each ray is then tested to see if it intersects with objects in the scene. The

simplistic overview of the ray trace process is shown in Algorithm 1 and in Figure 2.1

demonstrated in Glassner (1993). Only recently with the increase of computing power

has ray tracing started to become more popular again. Due to each pixels ray calcula-

tions being independent, ray tracing can benefit from a high degree of parallelism. One

method of implementation ray tracing in parallel on a GPU is when "Object space is

divided into parts (subspaces), each of which is allocated to a processor." (Kobayashi

et al., 1987)

 

 

Eye 
Image Plane 

Light Source 

Scene Object 

Figure 2.1: Diagram of the basic ray casting approach
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Algorithm 1 Ray tracing pseudo-code.

for each pixel in (x) do % Loop Screen Pixels Width

for each pixel in (y) do % Loop Screen Pixels Height

for each object in (scene) do %

Find intersections with objects and determine which one is on top.

if no intersections found then
Colour background colour and EXIT.

end if
if Intersections found then

Calculate pixel colour with lighting calculations.

end if
end for

end for
end for
Display all pixels in a image.

2.1 Object Ray Intersections

Ray tracing rendering is achieved by computed collision detection between rays and

objects in the scene. These objects include spheres, planes and polygons described by

Amanatides (1984). Rays are cast from the camera, through each pixel of the image,

and tested for these ray-object intersection. There is slight differences for checking

various objects, but the principles are the same. The more objects in the scene the more

calculations will be needed without optimization. Intersections are calculated through

these various functions to find values of the ray parameter which objects are at the front

and where the lighting needs to be calculated. Ray-triangle intersections is one way to

represent polygons shown by Purcell et al. (2002). More intersection calculations can

be seen in work by Shirley (2000).
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2.2 Illumination & Lighting

To produce highly realistic images ray tracing involves the combination of many lighting

techniques together with the material properties of objects, for example surface colour.

The most commonly used methods for lighting were pioneered by Blinn and Newell

(1976) and Phong (1975) and are still widely used in lighting algorithms of today. To

create more natural lighting a combination of Ambient lighting, Diffuse lighting and

Specular lighting creates a good starting point. Ambient lighting is the base low lighting

when no direct light source is applied which ensures the outlines of shapes are shown.

Diffuse reflections produce soft reflections as seen on matte surfaces, while specular

reflections are the shiny highlights found on smooth surfaces like mirrors. This lighting

model called Phong Illumination lighting was pioneered and named by Phong (1975). It

is the basic way to render objects that reflect light in a privileged direction without a full

blown reflection and is also used in traditional raster graphics. This was improved upon

by Blinn and Newell (1976) who added some considerations to the initial specular result.

This involved including a Blinn vector with the normal to the surface producing a result

called Phong-Blinn lighting. Other conditions are sometimes used such as transparency,

bump-mapping and ambient-occlusion to help to create a even more realistic image.

See also Cook and Torrance (1982) who also further developed "a reflectance model"

combined with the other methods for lighting. These ray tracing lighting effects can be

built up upon to form the combined effect from these modular components, for example

the total intensity for a surface point being can be equal to the summation of ambient,

diffuse and specular components, (Phong, 1975). This is then combined with recursive

calculations for reflections and refractions, used by Atalay and Mount (2002), to form

the final colour. The term ‘Ray Tracing’ comes from this recursive ray casting nature of

these lighting factors, which is then ‘traced’ back to form the final colour.

2.3 Cameras

Ray tracing depends on a camera position often called the eye position and casting rays

to an image plane to get a final image. There are a few different methods for cam-

era types which are outlined by Carlbom and Paciorek (1978). Parallel Projections is
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one method, which shoots all rays in parallel into each pixel. The other is Perspective

Projections which shoots all rays from a single point towards each pixel in the scene

which is more physically accurate as it "represents an object as it would be seen by an

observer positioned at a certain vantage point". This also incorporates the physical cam-

era attribute known as focal length. Carlbom and Paciorek (1978) also discuss viewing

transformations useful for moving and positioning the camera.

2.4 Anti-aliasing

There are many methods aimed at reducing aliasing (a unwanted staircase pixel effect in

images). The universally used solution in ray tracing was initially developed by Whitted

(1980) called super-sampling. Super-sampling is the idea that you sample a higher

resolution image therefore using more individual colour samples per pixel in order to

reduce aliasing problems. "The only way to anti-alias within standard ray tracing is to

go to higher resolution", (Amanatides, 1984). For a final image of X by Y resolution,

render to a higher resolution of double X and double Y , then taking the average of four

samples to get the colour of one pixel. This is effectively a 4x super-sampling due

to computing four times more rays per pixel, although therefore requiring a lot more

computation.

2.5 Texture Mapping

Ray tracing can be combined with texture mapping to produce even more realistic re-

sults. Texture mapping is the process of applying texture colours and patterns usually

from a bitmap or raster image to geometry in the scene, originally pioneered by Catmull"

(1974). 2D or 3D textures are defined texels in a 2D or 3D array which translate the tex-

ture coordinates to the geometry described by Shirley (2000). Blinn and Newell (1976)

pioneered this idea of UV texture coordinates to map textures onto curved surfaces. Ad-

ditionally the texture can then also be combined with other optional techniques such as

bump mapping and transparency mapping. Bump mapping is a technique in computer

graphics for simulating bumps and wrinkles on the surface of an object later introduced

by Blinn (1978).
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2.6 Existing Implementations

Ray tracing is most commonly used in modelling packages such as 3DS Max and Maya

when rendering an image of the scene. Other software such as POV-Ray by Buck

(2004), are striving towards getting real-time ray tracing performance. The hardware

company’s NVidia has researched and produced there own software OptiX (Parker et al.,

2010) running in parallel with CUDA and optimised through accelerated data structures,

similar to the work of this project. A different approach is the RPU, ray processing unit.

The RPU was proposed by Woop et al. (2005). Introducing an "architecture and a proto-

type implementation of a single chip, fully programmable Ray Processing Unit." which

is a hardware implementation approach to real-time performance of ray tracing. Woop

et al. (2005) stated that it "already renders images at up to 20 frames per second".

2.7 Real-Time Speed Improvements

2.7.1 Parallel GPU with CUDATM

CUDA is a parallel computing platform and programming model created and devel-

oped by NVIDIA. Most relatively new NVIDIA GPUs implement the CUDA architec-

ture, "All NVIDIA’s currently available cards (GeForce, Quadro, and Tesla brands) have

CUDA work distribution units that are optimized for homogeneous units of work." de-

scribes Aila and Laine (2009). CUDA offers easily implementable extensions available

for C and C++. Unlike OpenCL, CUDA-enabled GPUs are only available from Nvidia.

Budge et al. (2008) demonstrates an implementation with "CUDA framework based on

fast stack-based kd-tree traversal. Each ray is mapped to a thread, and a single kernel is

used for the entire ray tracing pipeline including shading".

2.7.2 Parallel GPU with OpenCL

OpenCL (Open Computing Language) is another framework for writing programs that

execute across platforms consisting of central processing unit (CPUs) and graphics pro-

cessing unit (GPUs). OpenCL gives any application access to the graphics processing

unit for non-graphical computing. OpenCL also allows the use of the graphics process-

ing unit for computation beyond graphics for example the parallel processing of ray
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tracing. A useful feature is that "OpenCL is designed to efficiently share with OpenGL"

described by Munshi (2008). The major key feature of OpenCL is portability on most

GPUs (via its abstracted memory and execution model). Although the portability is

"not guarantee that the same code will run on all different types of devices with near-

optimal performance without rewriting the most performance- or data-intensive parts

of the code targeting a specific device.", (Cho et al., 2010). The OpenCL specifica-

tion added by Munshi (2008) provides much information on implementing an OpenCL

application.

2.7.3 Spatial Partitioning

Rendering the scene can be optimised by partitioning the scene so that each ray does

not have to be checked against every piece of geometry. Spatial partitioning works by

grouping multiple objects together into Bounding Volume Hierarchies (BVH), so that

only select regions of the scenes geometry need to be intersection checked describes

(Glassner, 1993). There are many BVH methods with a variety used for ray tracing

including commonly Kd-Trees, Octrees, Binary Space Partitioning and Regular Grid

implementations. Kd-tree partitioning constructs a k-dimensional tree which is a spe-

cial case of a binary space partitioning tree. Hou and Zhou (2011) describes how to

utilize the GPU efficiently by parallelising both within and across kd-trees structure.

Octree implementation is described by Jing and Song (2008) saying, "the root node

expresses a cube that contains the whole objective. If the cube is filled with the objec-

tive fully, stop dividing; else the cube is divided into eight small cubes of same size."

Regular grid implementations involve partitioning the scene into same size voxel boxes,

making construction and traversal easier. Fujimoto et al. (1986) demonstrates a method

to traverse these data structures with a ray to find the objects it intersects. A major dis-

advantage of these spatial partitioning methods is that for dynamic scenes they require

the tree structure to be either partially or fully rebuilt each time the scene changes.
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3 Design, Methods and Implementation

To build the final real-time ray tracer, the following methods, algorithms and techniques

are combined in program code to produce a working real-time ray tracing application.

Methods are detailed below on the techniques and algorithms used, as well as design

and implementation decisions made.

3.0.4 Scope

To create a real-time ray tracer a system has been written using C++. This is combined

together with WIN32 and OpenGL to render the produced ray traced image output to

the screen. The GPU implementation is achieved with OpenCL, but it is beyond the

scope of the project to also implement the program with CUDA. Ray intersections with

spheres, planes and triangles are implemented, but other additional geometry is not

included as it wouldn’t provide much benefit to the system. The scope is also limited

to just implementing a ray tracer, other additions such as Radiosity and other optional

lighting effects are too complicated to be added this project, but could be considered

in future work. Testing is performed to determine performance factors, but only upon

available hardware of AMD and Intel, therefore the system is not required to work on

NVidia hardware and is untested.

3.1 Basic Approach

The fundamental structure of ray tracing shown earlier in Figure 2.1 together with Algo-

rithm 1 producing the basic approach towards implementing a ray tracer. This method

becomes the starting point to implementing a ray traced solution with a modular design

allowing many other lighting options to be gradually attached. This method loops for

all the pixels in the screen for both the width and height. This is the major problem

for ray tracing being slow, but can be easily parallelised due to each rays independent

nature (see OpenCL section 3.8). For each of these pixels a ray is constructed from an

eye viewing position and is traced through the current pixel. A ray is constructed from a

origin point Ro and a direction Rd . In this case the specified camera (eye) position is the

starting point for every ray and the direction is the vector between the eye point heading
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towards the current rays pixel. These values are denoted by x,y,z values. This ray is

then checked for intersections with objects in the scene, the naive approach is to check

all objects for the closed intersection, but later an accelerated data structure can be used

to reduce the number of intersections(see Regular Grid section 3.10). A point along a

ray can be determined using the ray equation: P = Ro +Rd ∗ t where t is a parameter

of distance along the ray. The intersection methods for objects described below calcu-

late this t parameter, allowing intersection points to be calculated and determine which

object is in front. From this point the pixel colour is calculated using various lighting

factors and the objects properties.

3.2 Intersections

Ray Sphere Intersections The simplest objects for computing intersections are spheres

due to there easy mathematical description. Spheres can be rendered very easily us-

ing ray tracing compared to traditional rasterisation approaches which require the use

of polygons. The mathematical representation of a sphere consists of a centre point

Sc = (Xc,Y c,Zc) and a radius Srr. The intersection can either be computed using the

quadratic formula to compute t0 and t1 values or a geometric approach which is slightly

faster. The basic geometric algorithm implemented (Glassner, 1993) is detailed in Fig-

ure 3.1.

origin to centre vector ≡ OC = Sc−RayOrigin

closest approach ≡CA = OC ·RayDirection

half chord distance ≡ D =CA2−OC2 +Sr
2

Check half chord distance: If D < 0, then no intersection as ray misses the sphere.

t =CA−
√

D for rays originating outside the sphere,

t =CA+
√

D for rays originating inside or on the sphere.

t < 0 then sphere is behind the ray.

Figure 3.1: Ray-Sphere Intersection Geometric Approach
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Ray Plane Intersections An infinite plane is another mathematical object that can be

easily rendered in ray tracing. The mathematical representation of a plane consists of a

point on the surface of the plane Pc = Xc,Yc,Zc and the normalised surface normal of the

plane Pn. From these parameters intersection points with a ray can be calculated. The

algorithm used is shown in Figure 3.2.

compute dot product ≡ vd = Pn ·RayDirection

vd == 0 then ray and plane are parallel.

t = (Pn · (Pc−Ro))/vd

t < 0 then plane is behind the ray.

Figure 3.2: Ray-Plane Intersection Approach

Ray Triangle Intersections To produce more complex objects polygons are needed

such as triangles, which is the standard approach to create a object/scene in Computer

Graphics. Triangles are similar to planes but are finite instead of infinite. The repre-

sentation of a triangle is define as three points Tv1xyz,Tv2xyz,Tv3xyz and the normal to the

triangles face Tn. Since a triangle is so similar to a plane, the same approach is used to

calculate the intersection point shown above using Tn and one vertex. Once the point on

the plane is found this needs to be checked to see if the point is inside the sides of the

triangle. Scott (2005) describes two techniques, "the same side technique" and the other

using barycentric coordinates. The barycentric approach is described as slightly more

efficient and therefore chosen for implementation. Firstly picking one of the points, all

other locations on the plane are considered as relative to that point. e.g Tv1 which can

also be used as the plane origin point. With the point on the plane known, the point

equation can be used and rearranged to find the unknowns to check whether the point

is inside the sides of the triangle. This is shown in in Figure 3.3 with triangle vertexes

represented by A = Tv1,B = Tv2,C = Tv3
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Point equation: P = Tv1 +u∗ (Tv3−Tv1)+ v∗ (Tv2−Tv1)

Rearrange: (P - A) = u * (C - A) + v * (B - A)

Substitute: V0 = (C−A),V1 = (B−A),V2 = (P−A)−>V2 = u∗V0 + v∗V1

Rearrange and substitute to produce two equations, used to solve the two unknowns:

u = ((V1.V1)(V2.V0)− (V1.V0)(V2.V1))/((V0.V0)(V1.V1)− (V0.V1)(V1.V0))

v = ((V0.V0)(V2.V1)− (V0.V1)(V2.V0))/((V0.V0)(V1.V1)− (V0.V1)(V1.V0))

if u or v < 0 then wrong direction and outside the triangle.

if u or v > 1 then walked too far and outside the triangle.

if u + v > 1 then crossed the opposite edge and outside the triangle. else point is inside

the triangle.

Figure 3.3: Ray-Triangle Intersection Barycentric Approach

3.3 Phong Illumination

To compute the colour of the screen pixel for a intersected object, the objects defined

colour is combined with various lighting factors. Ray Tracing uses the same basic local

lighting as model, implementing the Phong illumination model (Figure 3.4). The full

Phong model of illumination contains terms for ambient, diffuse, and specular reflec-

tions. These components are simply added together (3.1).

PixelRGB = AmbientRGB +Di f f useRGB +SpecularRGB (3.1)

The ambient model of illumination is very similar to the self-luminous model of ob-

ject colour. It provides default colour to objects when they are not directly lit. But, this

gives slightly unrealistic lighting effects and is a greatly over-simplified model of the

world. This can be implemented as

AmbientRGB = (OR ∗0.1,OG ∗0.1,OB ∗0.1)

where ORGB is the intersected objects defined colour.

The next part is diffuse reflection, also known as Lambertian reflection. The brightness

of a Lambertian surface depends on the angle between the light direction and the surface

normal. Viewer’s eye position is irrelevant to the diffuse lighting computation.

Reg: 4759265 15



CMPC3P1Y 3 Design, Methods and Implementation

Figure 3.4: Phong illumination components

Di f f useRGB = LightRGB ∗ORGB ∗ (LightDirection ·ON)

The specular reflection aspect allows the simulation of render shiny surfaces, causing

surface highlights. The specular term varies based on the position of the observer. The

specular term chosen is the derived version based on the work of Jim Blinn, called

Blinn-Phong (Blinn and Newell, 1976). This is expressed in terms of the surface nor-

mal, the lighting direction and the viewing direction with a specular-reflection exponent

component. The degree to which specular reflection falls off can be set by the blinn

power exponent value.

SpecularRGB = (ON ·H)BlinnPower

where H = normalise(LightDirection−RayDirection)

3.4 Camera

A basic static camera system is easy to implement simply using the pixel values stated

before, but to get a moving camera to view the scene from different angles requires
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another approach. A perspective view using the eye position and a direction can be

used. Directly trying to modify values of the camera can easily cause screen distortion

with the change in the field of view, making spheres no longer appear round. Therefore

a rotation and translation matrix is multiplied with both the eye and direction to move

the camera without the field of view changing. This is easily achieved by getting the

ModelView matrix off of the stack and multiplying such as below. In this case the

ModelView matrix is consisting of a translation, rotation in x and rotation in y:

ModelViewMatrix≡MV =


cosθy1 0 sinθy Tx

0 cosθx1 −sinθx Ty

−sinθy sinθx cosθxcosθy1 Tz

0 0 0 1



RayStart =


Eyex

Eyey

Eyez

1

 ·
[

MV
]

RayDirection =


Pixelx

Pixely

0

1

 ·
[

MV
]

3.5 Shadows

To produce shadows where objects can block light from other objects, a concept of a

shadow ray is introduced. This shadow ray is used to test if a surface is visible to a light.

If the viewing ray intersects an object then a shadow ray is constructed between this

point on the surface and each light source in the scene. This ray is traced between this

intersection point and the light. If any opaque object is found in between the surface and

the light, the surface is in shadow and so the light does not contribute to its shade. This

ray between the object and light needs to test for intersections the same way as the view

ray earlier. When in shadow ‘Ambient’ light is applied, therefore some lighting may

be resident in shadows. However this approach produces hard shadows with a instant

switch between lit and in shadow, where as in reality the lit area gradually blends to

become shadow. Soft shadows techniques require many more rays, severally affecting

the real-time performance and therefore not used.
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3.6 Reflection

A key feature of ray tracing is reflections, which are difficult to simulate using other

algorithms, but are a natural result of the ray tracing algorithm. This is a recursive

process which involves Ray Tracing secondary rays from the point of intersection. A

reflected ray in constructed in the mirror-reflection direction for shiny surfaces. It is

then intersected with objects in the scene, the closest object it intersects is what will be

seen in the reflection. The final reflectance pixel colour is the returned colour multiplied

by the reflectance factor of the object. (See Figure 3.6). The incidence ray (eye ray) is

reflected at the intersection point, resulting in the reflection ray. The angle between the

normal is the same for both sides. The formula in Figure 3.5 is applied.

Re f lectedRayDirection = ON ∗ (ON · IncidentRayDirection)+a and

IncidentRayDirection +a = ON ∗ (ON · IncidentRayDirection)

Therefore by rearranging and subsituting removing a to get:

Re f lectedRayDirection = IncidentRayDirection−2∗ (ON · IncidentRayDirection)∗ON

Re f lectedRayOrigin = IntersectionPointxyz +Re f lectedRayDirection ∗0.01

PixelRGB+= RayTrace(Re f lectedRay)∗ORe f lectance

Figure 3.5: Reflection algorithm

Figure 3.6: Reflected light ray at a point on the surface of a sphere
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3.7 Refraction

The next lighting aspect added is to simulate the refraction of light (or sometimes called

transmission), such as for the effect of light bending in glass and other translucent mate-

rials. This is another recursive technique that requires tracing secondary refracted rays.

The amount of bending depends on the objects material properties defined by a refrac-

tion index value. The following algorithm described in Glassner (1993) is the vector

form derived from Snell’s Law of the physics of refraction of light. From the incident

ray and a normalized object normal vector n, its possible to work out the normalized

refraction ray. Some parts of this algorithm are similar to the specular reflection calcu-

lation done earlier. (See Figure 3.7)

cosθ1 =−(ON · IncidentRayDirection)

cosθ2 = 1− re f ractionIndex2 ∗ (1− cosθ1
2)

Re f ractedRayDirection =

(re f ractionIndex∗ IncidentRayDirection)+(re f ractionIndex∗ cosθ1 -
√

cosθ2)n

Re f lectedRayOrigin = IntersectionPointxyz +Re f lectedRayDirection ∗0.01

PixelRGB+= RayTrace(Re f ractedRay)∗ORe f ractance

Figure 3.7: Refraction Algorithm

3.8 OpenCL

To implement the ray tracer concurrently, the OpenCL platform was chosen. This is

due to no NVidia hardware being readily available, as well as providing other bene-

fits described earlier. OpenCL-coded routines, called kernels, can execute in parallel

on GPUs and CPUs from many popular manufacturers. Also OpenCL supports code

closely linked to OpenGL, although debugging tools weren’t available, therefore mak-

ing testing very difficult. OpenCL projects consist of the host application and the ex-

ecutable kernel which is run in parallel on the hardware devices. OpenCL contains

data structures and functions that are unique, and not found in other platforms such as

CUDA.
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The main five data structures that make up the host application are:

cl_device_id,cl_context,cl_kernel,cl_program and cl_command_queue.

Together these form steps that initialise, compile and execute the Kernel. The host ap-

plication is comprised of these Steps:

Step 1. First select the device to run upon, e.g CL_DEVICE_TYPE_CPU or

CL_DEVICE_TYPE_GPU and create the device based on the system platform.

Step 2. Create an OpenCL context from the device platform obtained. This allows

devices to receive kernels and transfer data.

Step 3. Next create a command queue from the context, so each device can receive

kernels through a command queue.

Step 4. Next load the Kernel code file, these are a ‘.cl’ file external to the program.

This solution opted to allow for interchangeable kernel files for testing purposes.

The file consists of the code that is to run concurrently, in this case the ray tracing

for each pixel.

Step 5. The host application next needs to compile the code from the kernel file into a

OpenCL Program data structure, which the host can select the kernel from.

Step 6. The kernel object is then created which the host application can then distribute

to devices.

Step 7. Next if the program requires data to be passed to and from the kernel, then

buffer objects need to be created. This program transfers pixel data and other

parameters to the kernel. define and set kernel arguments. Buffer objects declare

the memory for these parameter and are then assigned to the kernel object.

Step 8. Finally the kernel needs then to be enqueued onto the devices through the

command queue.

Step 9. Optionally to read buffer contents after execution the buffer contents then need

to be mapped back into a data structure in the host application, in this case pixel

colour values.

Memory Spaces The kernel parameters can be stored using different memory meth-

ods to optimise the performance of the memory transfer. Normally parameters are use

the Global memory space as it is the largest capacity memory subsystem on the com-
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pute device, but is considered the slowest memory subsystem. This is required for the

large data sets of scene data and the pixel grid. Other memory spaces available are lo-

cal memory which is shared by work-group, private memory which is per work-item

memory and constant memory which is a region of read-only memory. Constant mem-

ory is the fastest memory space and has been used to greatly improve the data transfer

performance of some parameters that are constant across all executed kernels and re-

quire little memory. Additionally the parameters that require global memory can be

optimised through specifying that the memory uses the host memory pointer, avoiding

extra memory copying.

OpenCL Shortcomings Through implementing a program in OpenCL there are a

number of problems that need to be address such as memory overflow due to limiting

size of memory spaces, additionally out of bounds problems can occur if indexes aren’t

correctly assigned. The lack of debug information makes development and testing ad-

ditionally harder. The ray tracer requires recursion to be implemented correctly but

GPU graphics devices generally have yet to include recursive functionality, but is likely

to be included in future hardware. AMD platforms are the exception and support one

layer of recursion allowing the ray tracer program to be implemented, but resulted in

incompatibility with current NVidia hardware.

3.9 File Loader

Scene data to be rendered to the ray tracer needs to be easily customisable and inter-

changeable. Therefore a file loader is needed to load text based data. This is achieved

by reading in a file name and opening the data in the C++ host application. A cus-

tom file format for spheres and planes was needed to be created. Additionally the file

loader is configured to open object format (.obj) files to load triangle meshes. The scene

data is then passed to the OpenCL kernel ray tracer. The different object formats are

distinguished by an identifier at the start of each line. The format listed below:

v - Vertex f - Triangle face

o - Standard primitive t - Total objects to load

r - Scene background colour
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3.10 Regular Grid

The naive approach to ray tracing is to loop through all the objects in the scene when

checking for intersection tests. Performance can be greatly improved with an acceler-

ated data structure. This ray tracer chose to implement a regular grid structure to reduce

the number of intersections. This type of spatial division subdivides the scene space in

regular sized sub-boxes. As the ray passes through the grid of boxes, checks are made

to see if they contain geometry that we should ray trace against. This means rather than

checking rays against all objects in the scene, only need to do intersection calculations

with the boxes the ray passes through. This idea is illustrated in 2D in Figure 3.8.

Figure 3.8: Traversing a ray through a 2D Grid

The first step is to generate the grid for the scene data. The grid dimensions are

defined from the maximum and minimum position of the objects in the scene creating a

bounding box around the whole scene, this is then cut into 3D box cells using defined

number of boxes e.g 10 by 10 by 10 cells. This structure is implemented with a concept

of a 4D array with the forth dimension being the list of objects that this cell intersects.

To insert objects into grid cells the bounding boxes of the object primitives are found

(See Figure 3.9) and placed into the cells that intersect the box (See Figure 3.10).
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Sphere Bounding Box is:
ObjectBB.min = spherecenter - radius in xyz;

ObjectBB.max = spherecenter + radius in xyz;

Triangle Bounding Box is:
ObjectBB.min = smallest vertex coordinates in xyz

ObjectBB.max = largest vertex coordinates in xyz

(Infinite planes cannot be inserted into a finite regular grid and therefore need to be

handled separately as before.)

Figure 3.9: Finding bounding boxes of object primitives

Objects are then placed into cells by checking intersection of the ObjectBB and
each cell. This is achieved by checking:

if(Ob jectBB.min >= GridCell.min AND Ob jectBB.max <= GridCell.max)

then object inside the grid cell...

else if(GridCell.max < Ob jectBB.min OR GridCell.min > Ob jectBB.max)

then no intersection occurs as object is completely outside the cell...

else
then they intersect...

Figure 3.10: Approach to insert object primitives into cells

When performing ray tracing the grid needs to be traversed with the rays passing

through it, testing for intersections with the scenes geometry. We traverse the grid cell

by stepping cell by cell following the ray’s direction (See Figure 3.8). The 3D-Digital

Differential Analyser (or DDA) algorithm is used to achieve this (Fujimoto et al., 1986).

The first step before traversing the grid is to check if the ray hits the grid at all, which

can be done with a simple ray-box intersection test. If the ray intersects the grid then

the coordinates of the cell where the ray enters the grid are computed. Once we know

the start position of the ray in the grid (which requires to convert the hit point or the
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ray’s origin if the ray is inside the grid to cell coordinates), we simply use the DDA

algorithm to efficiently walk through the grid in the direction of the ray and test for

an intersection with the geometry contained by every cell the ray passes through. The

traversal algorithm is easily explained in 2D, starting with the ray starting point. To

be able to step through the cells the distance to move ‘tMaxX’ to cross the vertical

cell boundary is found, and ‘tMaxY’ to cross the horizontal cell boundary. Once these

factors are found, traversal can be stepped by using the minimum of these values which

determines how far we can travel before we hit the first cell boundary. This method is

shown in Algorithm 2 below (Amanatides et al., 1987). This was easily extended into

3D for our implementation simply adding a Z axis component.

Algorithm 2 2D Grid Stepping Traversal
loop

if tMaxX < tMaxY then
tMaxX = tMaxX + tDeltaX.

XCell = XCell + stepSizeX

else
tMaxY = tMaxY + tDeltaY

YCell = YCell + stepSizeX

end if
end loop

4 Results, Testing and Performance Analysis

To test the performance of the implemented ray tracer, several scenes were made. These

tests see the various performance factors of different aspects of the ray tracer, identifying

potential bottlenecks to the real time performance as well as seeing how well it runs on

different hardware systems including both parallelised GPU and CPU. The test scenes

listed in Table 4.2 are used (Screen-shots in Appendix A) and tested upon systems

listed in Table 4.1. All scenes are using a standard setup of 1 light and a 10 by 10

by 10 grid structure unless specified otherwise. Results are collected in two ways by
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measuring direct time to complete running the OpenCL kernel in seconds and the overall

performance of the system measured in frames-per-second (fps). The systems tested

upon are mid-range consumer hardware attached to a normal PC. Interchangeable kernel

files and scene files are used to test various aspects of the system, to more accurately

identify key areas of interest.

Table 4.1: Hardware Devices

Device Type Cores Clock Speeds
AMD FX 8350 Piledriver CPU CPU 8 4.00GHz

AMD Radeon HD 7870 GPU 1280 Stream Processors 1000MHz

Table 4.2: Test Scenes

Scene File Description Primitives Max Per Cell
scene.txt Basic Test Scene with planes, triangles

and spheres.

621 22

grid.txt Grid of spheres with maximum of 2 per

grid cell

1001 2

rand50.txt 50 Randomly placed spheres 53 6

rand500.txt 500 Randomly placed spheres 503 18

rand5000.txt 5000 Randomly placed spheres 5003 113

teapot.obj Blinn and Newell (1976)’s Teapot

made from triangles.

1057 102

bunny.obj Turk and Levoy (1994)’s Rabbit made

from triangles.

4968 74

objects.obj Various objects made from triangles. 5436 401

Each scene has been tested on each of the hardware devices shown in Table 4.3.

Real-time performance has been achieved using the GPU, but CPU implementations

run slower. Increasing the number of grid data per cell, introduces a lot more compu-

tation time and memory costs. This can be seen in the results to be proportional to the

performance. The grid data structure can help to improve performance, but the benefit
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Table 4.3: Scene Performance Data

Scene name CPU(FPS) CPU(s) GPU(FPS) GPU(s)
Scene 2 0.48 17 0.04

Grid 9 0.08 30 0.01

50RAND 7 0.10 28 0.02

500RAND 4 0.20 19 0.03

5000RAND 1 0.70 7 0.11

Teapot 2 0.67 16 0.05

Bunny 1 1.00 7 0.13

Objects 3 0.36 17 0.04

appears to vary being highly dependant on grid densities. There are also differences in

the data due to the number of rays that don’t intersect objects. This is demonstrated

with the ‘objects.obj’ scene that has the largest number of triangles performing better

than other scenes with considerably less primitives such as the ‘bunny.obj’ scene. There

are many factors effecting the scene performance with differences in shapes and camera

positions. This makes detailed comparison of these scenes harder to quantify. The best

comparison can be achieved by looking at the random sphere data scenes that share the

same camera positions and overall space layout.

Testing the benefit of the regular grid data structure To fully quantify the effective-

ness of the grid data structure the basic ‘scene.txt’ file is tested with a separate kernel

implementation that contains none of the grid acceleration code and uses only the naive

approach of performing intersections with all the objects in the scene. This can compare

the performance benefit in Table 4.4

Table 4.4: Performance data of scenes with no regular grid optimisation

Scene file CPU(FPS) CPU(s) GPU(FPS) GPU(s)
50RAND 4 0.20 28 0.02

500RAND 1 1.80 7 0.12

5000RAND 0 12.80 1 0.90
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The performance difference between the regular grid implementation and intersecting

all the objects is quite significant. With the increasing amounts of spheres, the grid saves

a lot of computation time helping greatly to make real time performance more possible.

The downsides of the grid come in the form of increased memory usage and restricting

moving objects in the scene as the grid needs to be modified or rebuilt if a object moves.

Other accelerated data structures such as Octrees could be tested in future work.

Another factor that could help to improve performance is to alter the grid density.

If a higher grid density is used, each cell could potentially contain fewer objects and

therefore less intersection tests would need to be performed. However this comes at the

cost of much greater memory use. The effects of increasing the grid size can be seen in

Tables 4.5 and 4.6. This shows that for the standard scene the effect of increasing the

grid doesn’t change the performance much as the memory cost outweighs the benefit

of the reduction of objects per cell. However a performance increase can be seen for

the ‘bunny.obj’ with the increase in grid density gaining performance speed. This is

down to the maximum number of objects per cell decreasing from ‘74’ to as low as

‘24’. This therefore results in fewer intersections, outweighing the cost of the increased

memory. Tweaking this grid density for each scene could help to optimise their real-time

performance.
Grid Density FPS Seconds

10by10by10 16 0.041

20by20by20 16 0.048

30by30by30 16 0.046

Table 4.5: Performance after changing the

grid density for scene.txt

Grid Density FPS Seconds

10by10by10 7 0.132

20by20by20 10 0.084

30by30by30 11 0.077

Table 4.6: Performance after changing the

grid density for bunny.obj

Testing the performance of different standard screen resolutions The difference

in screen resolutions greatly affects the speed of the ray tracer as with increased num-

bers of pixels means more rays have to be traced. Therefore ‘scene.txt’ has been tested

with different commonly used resolutions to see the impact on performance (Table 4.7).

It was expected for this effect to be linear, but this is not shown in Figure 4.1. It has

been concluded that this is due to a changing viewing angle as well as the many factors
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that affect the performance of the ray tracer. These results also show that the ray tracer

can achieve good real-time performance at lower resolutions than the default resolu-

tion (XGA 1024x768), which is greater than many other implementations of ray tracers

shown in Glassner (1993).

Figure 4.1: Graph of performance against

total number of pixels

Resolution FPS
XGA(Default) 1024x768 17

Window 360x250 56

VGA 640x480 27

480p 720x480 25

720p 1280x720 16

1080p 1920x1080 9

Table 4.7: Performance data of scene.txt

with different screen resolutions

Performance analysis of the different lighting components To try to find which

areas of the ray tracer mostly affect the performance, a number of kernel files have been

made with various aspects of the ray tracing removed. These results were obtained using

the ’teapot.obj’ scene as this fairly includes the same amount of refraction, reflections

and shadows on each triangle and can be accurately used to test how much these factors

effect the system. The results are shown in Table 4.8. These imply that even with re-

moving reflections and shadows from a scene the performance difference if only slight.

However the refraction calculations appear to have the most performance impact, pro-

viding a large performance boost when this calculation was removed. Reflections and

refractions are quite similar in code, so such a large performance different is likely down

to underlying hardware acceleration. Therefore further work into optimising this sec-

tion can be done, to further increase real-time performance. Additionally a test with

just the Phong illumination was also performed as it produces a similar image shading

result to traditional OpenGL rasterisation rendering approaches and seems to perform

reasonable well in real time.
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Table 4.8: Removal of lighting features to identify computationally expensive sections

of code

Kernel file Kernel description FPS
MainKernel.cl Normal default kernel file 16

NoReflection.cl Kernel with no reflections 17

NoRefraction.cl Kernel with no refractions 24

NoShadow.cl Kernel with no shadows 18

JustPhong.cl No advanced lighting, just Phong Illumination 32

Testing the performance implications of memory transfer To see what other fac-

tors affect the performance of the final ray tracer, another kernel file was made with

all ray tracing removed. This allows the performance of memory transfer being passed

through the kernel to be recorded. Therefore the performance cost of the running ap-

plication is shown in Table 4.9. This memory only kernel is tested with increasing

numbers of spheres stacked on top of each other to gradually increase the grid memory

size. These results show that even without performing any ray tracing, other factors

such as the screen resolution and memory transmission seem to greatly slow down the

performance. The effect of increasing memory size slows down the FPS. Therefore the

memory transfer is a large factor in slowing down the performance. Though the ba-

sic scene without any ray tracing only runs at ‘31 FPS’. This is before performing any

ray tracing functions such as grid traversals, intersections and lighting. This demon-

strates that the host application is a performance issue and additional performance can

be achieved by reducing the cost of these memory transfers.

Table 4.9: Performance of memory transfer without performing ray tracing

Scene file Description FPS
scene.txt Normal default scene 31

sphere1.txt 1 centred sphere (maxcell 1) 33

sphere500.txt 500 stacked centred spheres (maxcell 500) 31

sphere5000.txt 5000 stacked centred spheres (maxcell 5000) 24
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Identifying the host application as being a major performance factor has prompted

additional tests on aspects of the application shown in Table 4.10. This demonstrates that

there is some overhead in the texture drawing. The biggest cost is the execution of the

OpenCL kernels as expected. Although even without any ray tracing or OpenCL kernels

the application peaks at ‘84 FPS’. Therefore there is a factor of the host application that

is greatly reducing performance and would therefore greatly help to provide additional

performance in the future if this could be improved.

Table 4.10: Performance impacts of sections of the host application

Program modification FPS
Normal Program 16

Program with no data output copying from the kernel 21

Program with no OpenCL kernel execution 84

Program with no texture assignment or drawing 24

Overall there are many factors that can affect the performance of this ray tracing.

Number of objects, positioning in the scene, lighting factors, and which hardware it is

running on all change the real-time performance. The biggest contributors to the ray

tracing performance is the screen resolution and grid memory sizes. The host applica-

tion has been identified to have low performance for future improvement.

5 Future Work

The field of ray tracing is a highly expandable field of work. There is certainly a lot

of future work and research to be explored in this field of computing. Future work into

additional areas of lighting and into improving the real-time performance are the key

areas to making ray tracing more mainstream in computer graphics rending.

There are many other features that can be added to this ray tracer to produced greater

lighting and scene effects. One addition could be to add improved anti-aliasing. Texture

mapping onto the scenes objects is also a technique discussed. This could improve

the image scene results, but was opted out in this implementation due to the cost of

sending more memory to the kernel parameters. Other lighting factors such as ‘Ambient
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Occlusion’ and ‘Soft Shadows’ are additions for improving image quality, but greatly

increases the number of rays to be cast.

Future work into further improving the ray tracing real-time performance is a key

area. This could be achieved by exploring additional data structures and looking at

other methods of implementing the ray tracer in parallel. This should aim at increasing

rendering speed with large data sets and addressing the memory transfer bottlenecks.

Specific to this ray tracer the host application of this could be investigated and im-

proved. Also work into getting the solution to work cross platform, such as looking into

CUDA implementations to compare speeds.

Future applications of this ray tracer include rendering of lighting for scenes imported

using the built file loader. The ray tracer could also be used for the basis of a simple

game offering good rendering effects. Commercial applications could involve work

with haptic devices and rending scenes with large numbers of spheres such as chemical

biomolecules.

6 Conclusions

This project focused on the design and implementation of a ray tracer capable of pro-

ducing computer graphics images. A final ray tracer program has been created which

exhibits a range of optical effects including shadows, reflections and refractions. The

resulting ray tracer works upon consumer hardware and has strived towards real-time

performance. Methods to improve performance have been implemented such as a spatial

decomposition grid and a parallel implementation using OpenCL. Through these opti-

misations real-time ray tracing has been achieved. All initial aims have been produced

and to a reasonably good standard.

Much more progression and research can also be achieved in this field in the future to

further render more complex scenes with greater resolutions in real-time. With improv-

ing hardware all the time, real-time ray tracing is definitely starting to be possible. It is

unlikely at this point in time to be able to be used in games with large scene data, but ray

tracing is definitely possible for other real-time applications or composite approaches.

Perhaps in the coming years, more applications will start to use the real-time ray tracing
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technique together with GPU implementations making the technique more widespread.

This is likely to happen as GPUs continue to get more cores and become increasingly

powerful.
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